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ABSTRACT

The need for better performance of turbomachinery with active magnetic bearings has necessitated
a study of such systems for accurate prediction of their vibrational characteristics. This is the second
part of a two part paper on the effect of sensor location on the forced response characteristics of
AMB turbomachinery. This paper presents a modification of existing transfer matrix methods for
rotor analysis, to predict the response of rotor systems with active magnetic bearings. The position
of the magnetic bearing sensors is taken into account and the effect of changing sensor position on
the vibrational characteristics of rotor systems is studied. The modified algorithm is validated using
a simpler Jeffcott model described in part I of this paper. The effect of changing from a rotating
unbalance excitation to a constant excitation in a single plane is also studied. A typical cight stage
centrifugal compressor rotor is analysed using the modified transfer matrix code. The results for a
two mass Jeflcott model are presented in part 1 of this paper. The results obtained by running this
modc! with the transfer matrix method have been compared with the results of the Jeffeott analysis
for purposes of verification. Also included, are plots of amplitude vs frequency fo- the cight stage
centrifugal compressor rotor. These plots will demonstrate the significant influence that sensor lo-
cation has on the amplitude and critical frequencics of the rotor system.

NOMENCLATURE

E Modulus of clasticity (N/nuwn?)
I Moment of inertia of massless shaft (mm®)
/ Polar moment of incrtia (rmm?)
If Transverse moment of inertia (smnr)
K Stiffness ratio, 4,/4, (dim)
Stiffness in transfer matrix equations (N/mm)
k, AMB stiffness (N/mm)
ky Shaft stiffness (N/mm)
M Mass ratio, m,/ny, (dim)
M Moment component in transfer matrix cquation (N-smm?)

xe

M., Moment component in transfer matrix cquation (N-mm?)
V.. Shear component in transfer matrix cquation (N)

V., Shear component in transfer matrix cquation (N)

d, Lccentricity component in transfer matrix equation (mm)
4, Eccentricity component in transfer matrix equation (mm)
C Damping (N-sec/mm)

¢ Exponential constant = 2.7182818 (dim)

1 Complex constant (dim)

1 Length of massless shafts in transfer matrix equation (min)
m, Point masses in transfer matrix equations (Kg)

X¢ Deflection component in transfer matrix equations (mm)
Xs Deflection component in transfer matrix cquations (mm)
0.. Slope component in the transfer matrix equation (rad)
0, Slope component in the transfer matrix equation (rad)

Fé Constant excitation force in Jeffeott model (N)

F. Constant excitation force component in the transfer matrix equations (N)

£, Constant excitation force component in the transfer matrix equations (N)

a Ratio of the distance between bearing centerline and sensor to half-span
of the rotor (dim)

w Frequency of shaft excitation (rad/sec)



] Frequency of shaft rotation (rad/scc)
Subscripts
1 Rotor station number in transfer matrix equations

INTRODUCTION

The use of active magnetic bearings in turbomachincry is a comparatively new development but
one which has shown great promisc for better control of rotating equipment. The idea behind these
bearings is not new however. The use of magnetic attraction to levitate the rotor shaft free of the
bearing had been tried before, but because the system is inherently unstable unless a real-time
control system is used, the use was not successful. The first actively controlled bearing was devel-
oped in the 1950’s. Since then the use of active magnetic bearings has gained widespread acceptance
particularly in North America and Canada. Weise [2] has given some examples of the varied uses
1o which active magnetic bearings have been applied. Kirk [5] lists a number of turbomachinery
installations where active magnetic bearings have been used. Magnetic bearings possess a number
of advantages compared to conventional bearings. They give an almost unlimited control over rotor
vibrational characteristics due to adjustable stiffness and damping. Automatic balancing is possible
by allowing the rotor to spin on its inertial axis. This lcads to decreascd vibrations and noise. Active
magnetic bearings do not require lubrication, and since they are non-contact bearings, they elimi-
nate the possibility of wear and tear of the stator and rotor surfaces. Weise [2] demonstrates the
tolerance of magnetic bearings to a wide range of temperatures and also their insensitivity to hostile
environments. Zlotykamien % 1] gives a good description of the various advantages of active mag-
netic bearings.

Most of the research in active magnetic bearings has been in the control systems used. Schweitzer
[7] shows a method for controlling an elastic rotor so that it can be represented by a low order
model amenable to control techniques. Williams, Kcith and Allaire [6] have developed theoretical
relationships to relate the characteristics of a controller transfer function to the stiffness and damp-
ing properties of an active magnetic bearing., Burrows and Sahinkaya [8] have evaluated various
strategies for applying a magnctic bearing to control the synchronous vibration of a flexible rotor.
Kirk et al [ 5] have presented results of shop testsona high speed eight stage centrifugal compressor
supported by active magnetic bearings along with some design recommendations. Kcesee [3] has
examined the effects of sensor position on the critical frequencies of rotors with active magnetic
bearing. This work is an extension of Keesee's work to include sensor position effect on forced re-
sponse vibration amplitudes, using the modificd transfer matrix method.

RESEARCH OBJECTIVE

As stated before in the introduction, the scnsors are not located at the place where the attraction
forces are applied on the rotor shaft, but at some distance away along the axis of the shaft. Duc to
this “non-colocation” of the sensors from the bearing position, the deflection sensed by the sensors
is not the same as the actual deflection at the bearing but differs from it by some magnitude, dic-
tated by the mode shape of the rotor shaft. Because of this, the stiffness and damping forces of the
active magnetic bearing depend not on the deflection at the bearing location, but on the deflection
at the sensor location. Lor such cases, the vibrational characteristics of the rotor system is different
from that obtained using conventional analysis programs. The objective of this rescarch is to take
into account, the effect of sensor non-colocation on the vibrational characteristics of rotors with
active magnetic bearings.

This research is an extension of the work done by Kecsce [3] and involves the modification of an
existing transfer matrix code to account for sensor non-colocation. But whercas Keesce's rescarch
was limited to studying the effect of sensor non-colocation on critical frequencies, this work also
considers sensor non-colocation cffects on forced response amplitudes. The other objective of this
research was to compare the vibrational characteristics of rotor systems, when they are subject to
unbalace excitation with circular synchronous shaft rotation, and constant excitation in one plane
with no shaft rotation or whirling. The cffect of changing mass ratios and stiffness ratios was also
studied.

The modification of the transfer matnx program was validated by comparing its results for the two
mass model with the results obtained from a simple program written to specifically analyse the two
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mass model described in part I of this paper. A typical cight stage centrifngal compressor rotor
model was also analysed using the modified transfer matrix method and its 1esults were compared
with the results of the Jeffeott model to verify the trend of behaviour of 1he rotor system with
varying sensor locations.

THE MODIFIED TRANSI'ER MATRIX METHOD

The first analytical study of flexible rotors using the transfer matrix metl od was presented by
Myklestad and Prohl. The rotor is divided into several discrete masses cal cd stations and these
masses are joined by massless flexible shafts. The response of the system is computed by using in-
fluence cocflicients, and formulating a sct of equations. The cquations are solved and a final sweep
is made to obtain the solution. J. W. Lund analysed the equations involved in the transfer matrix
method for the case of clliptic non-synchronous response of the rotor system and wrote a program
using these equations to study the vibrational characteristics of rotor systems. The program was
subsequently simplified to analyse circular synchronous response of rotor systems. This paper de-
scribes the modification of preciscly this simplified transfer matrix program written by L. J. Gunter
Jr. and R. G. Kirk at the University of Virginia, Charlottesville, Virginia. The modification was
done to take into account the non-colocation of sensors in active magnetic bearings.

To understand the classical transfer matrix method, consider a typical rotor section element as-
sumed to be composed of a point mass and a massless elastic shaft to its right.

Consider the forces acting on the mass to formulate the equations required for equilibrium. Refer-
ring to figure 1

VRe= Vhie+ (me® = K)x, — Guoxgs + FXC + a o’ 1]
VE = VEs+ Cuxie + (mpw? — K)xi, + FXS, — a, ma’ [2]
M= My + (I, — Ipw® 05, (3]
Myl = My + (I, = Iy’ 0% [4]
0 = 0% (5]
0%, = 0%, (6]
xi,cz = x!é (7]
xRo ok (8]

The solution in the Y direction can be obtained fromn the solution in the X dircction since it is as-
sumed that the motion of the shaft is circular. Hence equations in the Y direction are not required.
Now consider the equations for the massless elastic shalt of station i. 'rom figure 2

L R

,’xH-lc: Vic [9]
Ll R

VA 15 = in: [10]
I8 R R

A[yH-lc:Myic + Ii'inc [11]
L R R

‘wy i+15 = ‘Myis + 4 Vi (12]
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O ip1s =05 + s Vais t op Myis [14]
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Xipye = % + iUxic + (_67-,'7 - (’Ni> Ve + "‘2;5,' My [15]
1 ,
S O P WP
Xip1s = Xis + Ii'oxls + 6E1 - (’Ni ins + 2] Myis [16]

These equations can be presented in matrix form and the matrices arc called transfer matrices. As
can be scen from this matrix, a correction to account for the shear deformation cffect has also been
included. The terms of this correction factor are explained below

IA

{
~ a.Gusf;

GN, [17]

a, = area of section 1

G, = shear modulus of section i

Lo+ ew(+ dr®)? + (20. + 12.p)dr’) [15]
[6.01. + (11 + dr’)]

i
u is poissons ratio = ENRG, -1

dr, is the diamcter ratio = inner diameter/outer diameter
MODIFICATION FOR SENSOR NON-COLOCATION

Due to sensor non-colocation, at the station representing the bearing location, equations
[3.1] and [3.2] are modificd as follows

R € 2 - P 2

Viie = Vxic + Mm@ Xic — l\ixic“,, - thxlsm, + FXC + aymw (1]

R L + motx, — Koy, + FXS;— 2 20
s = Vs T CoXie, + M0 Xis s, ., S; — apymyw [2n]

The bearing stiffness is multiplicd by the deflection sensed at the sensor location instead of the ac-
tual deflection at the bearing.

ALGORITHM FOR MODIFICATION DUE TO SENSOR NON-COLOCATION

‘I'he modification in the point matrix for the bearing station, duc to the sensor non-colocation has
already becn discussed. However a straight forward sweep of the rotor is pssible only in certain
cases of sensor location. Upon examination, three cases of sensor location elative to the bearing

location can be listed.

1. One sensor before the bearing

2. One sensor after the bearing

3. Two sensors, onc each on either side of the bearing.

Case 1
For case 1, the sensor deflections are saved in the sweeping process and th en used at the bearing
station. The sweeping process is straightforward. Refer figures 3.

Case 2

In this case, since the sensor comes after the bearing, the sensor deflection.. are not known when
the sweeping process reaches the bearing. Thus the sensor deflections arc assumed to be some ar-
bitrary value. Generally, the deflections at the station before the bearing are used as these arbitrary
valucs. The sweeping process is then continued until the sensor location is reached. Here a
comparison is made between the assumed scnsor deflection and the sensor deflection calculated by
the sweeping process. If the two quantitics agree to within a certain margin of error, the sweeping
process is continued from the sensor station onwards. If the two quantities do not lie within the
error margin, the program iterates back to the bearing location and uses the sensor deflections cal-
culated by the current sweeping process. These sensor deflections are used, as cxplained before, in
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the bearing station point matrix calculations and the sweep process is continued. This leads to a
scries of iterations between the bearing station and the sensor station and these iterations are con-
tinued until the sensor deflections used at the bearing station agree with the - cnsor deflections cal-
culated at the sensor station by the sweeping process, i.e. convergence is obt: ined. refer figurcs 3.

Case 3

With two sensors, one each before and after the bearing, the case can be split 1Ip Into two cases one
resembling case one and the other resembling case two. Refer figures 3. W ien the sensor before
the bearing is reached, the sensor deflections are saved. These are used, the irst time the beanng
location is reached. The sweep process is then continued and the sensor aft r the bearing is dealt
with in a manner similar to case two.

DISCUSSION OF THE CONVERGENCE PROCESS

To aid the process of convergence to the correct values of sensor deflectio s, the Taylors series
convergence technique in two variables was used. This mcthod was the most suitable one since
there is cross-coupling between the stiffness and damping terms. However, due to the very low
magnitude denvatives involved, the convergence process fails and leads te divergence from the
correct solution.

When the cross-coupling of the stiffness and damping terms was ignored, and the Secant method
of convergence was used to converge on the sensor deflections along the two axes independently,
the algorithm converged with diminishing oscillations. However the numbes of iterations required
were more than those required, when no convergence algorithm was used.

Thus simply using the sensor deflections obtained from the sweeping proce: 5, back at the bearing
location, gave the fastest convergence. Refer table 1.

MODIFICATION TO SEPARATE GYROSCOPIC STIFFNESS FROM TRANSVERSE
STIFFNLESS

When the rotor is subjected to an external vibrational force assuming no ur balance to be present,
the gyroscopic stiffness will depend only on the rotor spinning speed and nc t on the fre uency of
excitation. Considering the rotor spinning frequency to be “s”, equations [3.3] and [ 3.4] are
modified as follows

L
M = MU+ w(sl, — wl)0 [21]
M =M+ o(sL, — ol )0 [22]

Here w is the frequency of excitation.

COMPARISON OF THE RESULTS OF THE 2 MASS ROTOR SYSTEM, FOR TIIE
JEFFCOTT MODEL AND THE TRANSFER MATRIX METHOD

The results of the 2 mass rotor system as obtained by the Jeffcott Model program have alrcady been
shown and discussed in part [ of this paper. The same rotor system data was used with the modified
transfer matrix method program, so as to compare the results with the Jeflcott model and thus
validate the correctness of the modifications. The Jeffcott model is important, but because of its
simplicity, its results arc of limited use. Also it does not model a complex rotor system composed
of many disk masses and possibly different shaft cross-sections along the rotor length. Hence, it is
the transfer matrix method that is more uscful for application purposcs, and the Jeffcott model will
serve for the purpose of comparison only.

Tables 2 and 3 give the comparison between the two programs. As can b seen from the tables,
there is a fairly close agreement between the results obtained from the two programs. The agreement
in the critical frequency values is much better than that between amplitude values and again, am-
plitude values agree better than phasc angle values. This is because, the critic. | frequencies of a rotor
system depends mostly on its mass and stiffness properties, both of which are accounted for in a
similar manner in the two programs. The amplitude and phase angle valucs show greater disagree-
ment due to the fact that the Jeffcott code assumes a sine-wave shape for th - mode shapes and this
assumption is only an approximation of the actual mode shape. It can be s 'n from the tables, that
the Jeffcott code underestimates amplitude values in most cases. Also, ai.iplitude values show a



higher disagreement when a constant force excitation is applied instcad of an unbalance force
excitation.

THE EIGHT STAGE CENTRIFUGAL COMPRESSOR ROTOR SYSTEM MODEL

To obtain a more realistic idea of the influence of sensor position, an cight stage centrifugal
compressor Totor system was uscd with the transfer matrix code. This rotor system is illustrated in
figure 4 and its design paramcters are given in table 4.

The program was run with all the four cases of sensor positions, namely sensor colocation, inboard
sensors, outboard sensors and two sensors on each side of the bearing. a values of -0.18, 0 and 0.18
were used, as is indicated by the sensor locations.

RESULTS OBTAINED FROM THE EIGHT STAGE COMPRESSOR ROTOR SYSTEM

The results obtained from the cight stage compressor rotor system arc summarized below and 1l-
lustrated in figures 5 to 1.

. The first mode critical frequency increases as the sensor is moved from the dircction of the
outboard location in the direction of the inboard location. This is in agrecment with the results
obtained from the two mass rotor system.

2. A significant difference between these plots and those of the two mass model, is the higher

amplitudes exhibited by the compressor rotor system when the sensors arc moved inboard.
To verify this deviation, an approximate two mass model of the compressor rotor system was
run with the Jeffcott program. The results obtained with this approximate model are shown
in figures 7 and 8, and show agreement with the results obtained by the transfer matnix program
with the compressor rotor system data as mput. The reason for this behaviour wall become
clear when the mode shape shown in figures 9 is examined.
The deflection at the sensor location is less compared to the deflection at the bearing location.
Duec to this, a lesser stiffncss and damping foree is applicd at the bearing location and this leads
to higher amplitudes of the rotor system. For a certain inboard sensor location, the deflection
at the sensor location is reduced to zero and this condition will produce the largest amplitudes
in the rotor system. The peculiar first mode shape that produces this phenomenon is similor
to that observed in the third mode, and secems to be the result of the high bearing damping
values. It has been ohserved that as sensors are moved inboard, the first critical frequency ini-
creases and the third critical frequency decreases. This is shown in figure 10. ITigh bearing
damping may bring the first and third cnitical frequencies together in such a case and thus
produce a first mode shape similar to the third mode shape.

3. Additionally, it was observed that when the mass ratio was increased, the maxiinum amplitudes
occured with inboard sensor locations nearer to the bearing location. Refer figures 11. This
can also be explained from the plots of the mode shapes. The maximum amplitude is observed
when the deflection at the sensor location is zero. In such a case, the stiffness and damping
forces at the bearing location are reduced to zero and the rotor system essentially exhubits
free-free vibration. Due to this, the deflection along the rotor longitudinal axis will depend only
on the mass distribution of the rotor system and not on the bearing stiffness and damping. A
higher mass ratio means greater mass at the bearing location and thercfore, lesser deflection in
free-free vibration than that at midspan. In such a case, the point of zero deflection occurs
nearer to the bearing location and a sensor placed at this point will produce the maximum
amplitude of vibration of the rotor system.

CONCLUSIONS

The modification of the rotor dynamics codes to account for sensor non-colocation show a definite
change in the vibrational characteristics when the scnsors are moved away from the bearing lo-
cation. The following conclusions can be drawn from this research:

1. The first mode critical frequency increases as the sensor is moved from the outboard to the
inboard direction. ‘T'his is due to the fact that for the first mode, the sensors sense a greater
deflection as they move inboard and away from the bearing Jocation. This increases the cffec-
tive stiffness of the active magnetic bearing and results in higher critical frequencies. Because
of this effect, it is possible to bypass the first critical by using the inboard sensors while starting
the rotor and when the rotational frequency ncars the first critical, switching to the outboard
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to

sensors. ‘This has been suggested by Keesee [3]. “T'he higher critical frequencies can be handled
similarly.

The amplitudes at the first cntical will be higher with outboard sensors and decrease as the
sensors are moved inboard and away from the bearing. However, this is not true in certain
cases where the first and third mode coincide. In such a case, the amplitudes at the first critical
increase as the sensors arc moved inboard upto a certain point and then decrease again. The
reason for such behaviour can be traced to the presense of high damping values along with the
condition of inboard scnsors. The behaviour of the critical frequencies and amplitudes, with
regard to changes in the sensor position, can be predicted by examining the mode shape of the
rotor shaft at or near the critical frequencics.

The results indicate a fairly close agrecment between the Jeffcott model and the transfer matrix
model. The comparison indicates greater differences in amplitude values compared to critical
frequency values and greater deviation in phase angle values compared to amplitude values.

‘The behaviour of the rotor system, with respect to changes in sensor location, does not indicate
any significant deviation when a constant force excitation is used instead of an unbalance force
excitation.

The effect of sensor location on first mode critical frequency increases with higher stiffness ra-
tios. This has been explained in the second chapter. Iligher mass ratios lead to increased
damping effects in the third mode and hence lower the amplitudes considerably.

‘The following recommendations can be made for future work in this arca:

1.

The transfer matrix modc! modified for this work, does not consider the efiect of pedestal
stiffness and damping, /e it assumes a rigid foundation. The program can casily be modified to
take this factor into account.

The existing transfer matrix code can only handle circular synchronous rotation of the rotor
system. It can be extended to analyse non-circular and non-synchronous motion of the shaft.

'The constant force excitation in the transfer matrix program is applied as a force function, di-
rectly on the journal mass. The behaviour of the rotor system, when the constant force
excitation is applicd as a displacement function, and on the bearing or pedestal mass, needs to
be investigated.

The modified transfer matrix code assumes that no couplings are present in the rotor longi-
tudinal cross-section. The code can be modified for the presence of a coupling, which then,
would only transfer displacements and shears across the connection, but would not transfer the
momgents.
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Figure 1. Forces acting on the point mass
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Figure 2. Forces acting on the massless elastic shaft
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2 MASS MODEL, UNBALANCE EXCITATION, M =1, K=2, ALPHA=03
FREQ = 130 HZ, CONVERGENCE TO XC, TRUE SOLUTION =7.649442

No. of | Taylor’s serics | % Diff. from | Secant method | % Diff. from | Simple % Diff. from
Iter. | Convergence true Soln. Convergenee true Soln. Iteration truc Soln.
1 3.500004 54.24 3.500004 54.24 3.500004 54.24
2 8.051951 -5.26 8.051951 -5.26 8.051951 -5.26
3 7.737319 -1.15 7.737319 -1.15 7.737319 -1.15
4 7.581234 0.89 7.930811 -3.68 7.628863 0.27
5 7.849375 -2.61 7.605373 0.576 7.648726 0.0094
6 3.625942 52.60 7.642738 0.088 7.650135 -0.0091
7 69.54724 -809.2 7.655252 -0.076 7.649398 0.00058
8 -959.629 12645.1 7.650030 -0.0077 7.649425 0.00022
9 15109.55 -197425 7.649057 0.0050 7.649445 -0.00004
10 -235771.3 3082381 7.649363 0.001 7.649442 0.0
1 3681287.0 -48124809 7.649458 -0.00021 7.649442 0.0
12 --- --- 7.649447 -0.000065 7.649442 0.0
13 - --- 7.649434 0.0001 7.649442 0.0
14 --- --- 7.649441 0.000013 7.649442 0.0
15 --- --- 7.649443 -0.000013 7.649442 0.0
16 - --- 7.649442 0.0 7.649442 0.0
17 --- --- 7.649441 0.000013 7.649442 0.0
18 --- --- 7.649441 0.000013 7.649442 0.0
19 --- - 7.649442 0.0 7.649442 0.0

Table 1. Comparison of different convergence schemes
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FIRST MODE, UNBALANCE EXCITATION, M= 1, K=2, BEARING/(MIDSPAN)

Jeffeott Code

Transfer matrix
Code

% Difference

a = -0.2

Critical Frequency 32.167 [ (32.167) 32.167 [ (32.167) 0/
Amplitude 2.285 / (4.425) 2.302 ] (4.482) -0.74 | (-1.29)
Phase Angle 103.48 / (102.57) 86 / (85.1) 16.89 / (17.03)
a = 0.0

Critical Frequency 35.333 / (35.333) 35.333/(35333) | o/
Amplitude 1.408 / (3.401) 1.408 / (3.402) 0/ (-0.03)
Phase Angle 90214 / (88.398) | 91.6 / (89.8) 154/ (-1.59)
a = 02

Critical Frequency 40.333 / (40.333) 40.167 [ (40.000) 0.41 /(0.83)
Amplitude 0.539 [ (2.281) 0.571 ] (2.310) 594 [ (-1.27)
Phase Angle 92571/ (86.391) | 104.1 / (81.8) -12.45 | (5.31)

Table 2. Comparison of the results of the 2 mass rotor system, for the Jeffecott model and the transfer
matrix method
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FIRST MODE, CONSTANT FORCE EXCITATION, M =1, K =2, BEARING/(MIDSPAN)

Jeffcott Code

Transfer matrix
Code

% Difference

a = -02

Critical Frequency
Amplitude

Phase Angle

32.167 | (32.167)
4.577 | (8.896)
104.24 [ (104.24)

32.167 [ (32.167)
5.410 / (10.522)
86.8 | (86.8)

0/ (0)
-18.20 / (-18.28)
16.73 / (16.73)

a = 0.0

Critical Frequency
Amplitude

Phase Angle

35.333 / (35.333)
3.045 / (7.352)
90.214 / (90.214)

35.333 / (35.333)
3.262 | (7.882)
91.6 [ (91.6)

0/
703/ (-7.21)
154 / (-1.54)

a = 0.2

Critical Frequency
Amplitude

Phase Angle

40.333 / (40.333)
1.335 / (5.643)
88.527 / (88.527)

40.000 / (40.000)
1.420 / (5.709)
83.9 / (83.9)

0.83 / (0.83)
-6.37/ (-1.17)
5.23 [ (5.23)

Table 3. Comparison of the results of the 2 mass rotor system, for the Jeffcott model and the transfer

matrix method

581



ROTOR SYSTEM PROPLRTY

Total rotor length

Distance to bearing I centerline

Distance to sensor at bearing |:
Outboard sensor

Inboard sensor

Distance to bearing 2 centerline

Distance to sensor at bearing 2:
Inboard sensor

Qutboard sensor

Mid-span diameter

Journal diarneter

Journal length

Total rotor weight

Reaction at bearing /

Reaction at bearing

SI UNITS

1879.6 mm

304.8 mm

190.5 mm

419.1 mm

1574.8 mm

1460.5 mm

1689.1 mm

177.8 mm

177.8 mm

254.0 mm

2.95 KN

141 KN

1.54 KN

Data for eight stage centrifugal rotor system model

ENGLISH UNITS

74.0 in

12.0 in

7.5 in

16.5 in

62.0 in

57.5in

66.5 in
7.0 in
7.0 in

i€ 0 in
663.2 Ib,
317.01b,

346.2 b,




